Part Number Hot Search : 
AS3931 W11N8 05004 CY62136V LB180 V2512AB1 SK504 MX7705
Product Description
Full Text Search
 

To Download ADR130 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Precision Series Sub-Band Gap Voltage Reference ADR130
FEATURES
Initial accuracy A grade: +0.70% (maximum) B grade: +0.35% (maximum) Maximum temperature coefficient A grade: 50 ppm/C B grade: 25 ppm/C CLOAD = 50 nF to 10 F Output current: +4 mA/-2 mA Low operating current: 80 A (typical) Output noise: 6 V p-p @ 1.0 V output Input range: 2.0 V to 18 V Temperature range: -40C to +125C Tiny, Pb-free TSOT package
PIN CONFIGURATION
NC 1 GND 2
ADR130
6
NC
NC = NO CONNECT
Figure 1. 6-Lead TSOT (UJ-6)
APPLICATIONS
Battery-powered instrumentation Portable medical equipment Communication infrastructure equipment
GENERAL DESCRIPTION
The ADR130 is the industry's first family of tiny, micropower, low voltage, high precision voltage references. Featuring 0.35% initial accuracy and 25 ppm/C of temperature drift in the tiny TSOT-23 package, the ADR130 voltage reference only requires 80 A for typical operation. The ADR130 design includes a patented temperature drift curvature correction technique that minimizes the nonlinearities in the output voltage vs. temperature characteristics. Available in the industrial temperature range of -40C to +125C, the ADR130 is housed in a tiny TSOT package. For 0.5 V output, tie SET (Pin 5) to VOUT (Pin 4). For 1.0 V output, tie SET (Pin 5) to GND (Pin 2).
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2006 Analog Devices, Inc. All rights reserved.
06322-001
TOP VIEW 5 SET (Not to Scale) 4 VOUT VIN 3
ADR130 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 Pin Configuration............................................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics............................................................. 3 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 ESD Caution.................................................................................. 5 Typical Performance Characteristics ............................................. 6 Terminology .................................................................................... 11 Theory of Operation ...................................................................... 12 Power Dissipation Considerations........................................... 12 Input Capacitor........................................................................... 12 Output Capacitor........................................................................ 12 Application Notes ........................................................................... 13 Basic Voltage Reference Connection ....................................... 13 Stacking Reference ICs for Arbitrary Outputs ....................... 13 Negative Precision Reference Without Precision Resistors.. 14 Precision Current Source .......................................................... 14 Outline Dimensions ....................................................................... 15 Ordering Guide .......................................................................... 15
REVISION HISTORY
10/06--Revision 0: Initial Version
Rev. 0 | Page 2 of 16
ADR130 SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
TA = 25C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to VOUT (Pin 4). Table 1.
Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY ERROR A Grade B Grade TEMPERATURE COEFFICIENT A Grade B Grade LOAD REGULATION Symbol VO Conditions Min 0.49650 0.49825 VOERR -3.50 -1.75 TCVO -40C < TA < +125C 15 5 -40C < TA < +125C; 3 V VIN 18 V; 0 mA < IOUT < 4 mA -40C < TA < +125C; 3 V VIN 18 V; -2 mA < IOUT < 0 mA 2.0 V to 18 V, IOUT = 0 mA -40C < TA < +125C, no load VIN = 2.0 V VIN = 18.0 V 0.1 Hz to 10 Hz To 0.1%, CL = 0.1 F 1000 hours @ 25C -0.13 -1.0 -40 +10 75 15 50 3 80 100 150 50 25 +0.13 +1.0 +40 150 ppm/C ppm/C mV/mA mV/mA ppm/V A mA mA V p-p s ppm/1000 hours ppm +3.50 +1.75 mV mV Typ 0.5 0.5 Max 0.50350 0.50175 Unit V V
LINE REGULATION QUIESCENT CURRENT SHORT-CIRCUIT CURRENT TO GROUND VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY OUTPUT VOLTAGE HYSTERESIS
IQ
Rev. 0 | Page 3 of 16
ADR130
TA = 25C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to GND (Pin 2). Table 2.
Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY ERROR A Grade B Grade TEMPERATURE COEFFICIENT A Grade B Grade LOAD REGULATION Symbol VO Conditions Min 0.9930 0.9965 VOERR -7.0 -3.5 TCVO -40C < TA < +125C 15 5 -40C < TA < +125C; 3 V VIN 18 V; 0 mA < IOUT < 4 mA -40C < TA < +125C; 3 V VIN 18 V; -2 mA < IOUT < 0 mA 2.0 V to 18 V, IOUT = 0 mA -40C < TA < +125C, no load VIN = 2.0 V VIN = 18.0 V 0.1 Hz to 10 Hz To 0.1%, CL = 0.1 F 1000 hours @ 25C -0.25 -2.0 -40 +10 85 15 50 6 80 100 150 50 25 +0.25 +2.0 +40 150 ppm/C ppm/C mV/mA mV/mA ppm/V A mA mA V p-p s ppm/1000 hours ppm +7.0 +3.5 mV mV Typ 1.0 1.0 Max 1.0070 1.0035 Unit V V
LINE REGULATION QUIESCENT CURRENT SHORT-CIRCUIT CURRENT TO GROUND VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY OUTPUT VOLTAGE HYSTERESIS
IQ
Rev. 0 | Page 4 of 16
ADR130 ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter VIN to GND Internal Power Dissipation Storage Temperature Range Specified Temperature Range Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Ratings 20 V 40 mW -65C to +150C -40C to +120C 215C 220C
THERMAL RESISTANCE
JA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance
Package Type TSOT (UJ-6) JA 186 JC 67 Unit C/W
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
Rev. 0 | Page 5 of 16
ADR130 TYPICAL PERFORMANCE CHARACTERISTICS
0.5020 0.5015 0.5010 0.5005
1.004 1.003 1.002 1.001
VOUT (V)
VOUT (V)
0.5000 0.4995 0.4990
06322-002
1.000 0.999 0.998
06322-005
0.4985 0.4980 -40
0.997 0.996 -40
-25
-10
5
20
35
50
65
80
95
110
125
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE (C)
TEMPERATURE (C)
Figure 2. VOUT vs. Temperature, VOUT = 0.5 V
10 9 8
NUMBER OF PARTS
NUMBER OF PARTS
Figure 5. VOUT vs. Temperature, VOUT = 1 V
10 9 8 7 6 5 4 3 2
06322-003
7 6 5 4 3 2 1 0
-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50
1 0
-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50
TEMPERATURE COEFFICIENT (ppm/C)
TEMPERATURE COEFFICIENT (ppm/C)
Figure 3. Temperature Coefficient, VOUT = 0.5 V
2.0 -40C 1.8 1.8
Figure 6. Temperature Coefficient, VOUT = 1 V
2.0
-40C +25C
VIN_MIN (V)
VIN_MIN (V)
1.6
+125C
+25C
1.6
+125C
1.4
1.4
1.2
06322-004
1.2
06322-007
1.0 -2
-1
0
1
2
3
4
5
1.0 -2
-1
0
1
2
3
4
5
LOAD CURRENT (mA)
LOAD CURRENT (mA)
Figure 4. Minimum Input Voltage vs. Load Current, VOUT = 0.5 V
Figure 7. Minimum Input Voltage vs. Load Current, VOUT = 1 V
Rev. 0 | Page 6 of 16
06322-006
ADR130
160 140 120 +25C 100 -40C 80 60 40
06322-008
160 +125C 140 120 100 80 60 40
06322-011
+125C
SUPPLY CURRENT (A)
SUPPLY CURRENT (A)
+25C -40C
20 0
20 0
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
Figure 8. Supply Current vs. Input Voltage, VOUT = 0.5 V
Figure 11. Supply Current vs. Input Voltage, VOUT = 1 V
6 TA = -40C, +25C, +125C 5
SUPPLY CURRENT (mA)
6 TA = -40C, +25C, +125C 5
4
SUPPLY CURRENT (mA)
4
3
3
2
2
1
06322-009
1
06322-012
0 -2
-1
0
1
2
3
4
5
0 -2
-1
0
1
2
3
4
5
LOAD CURRENT (mA)
LOAD CURRENT (mA)
Figure 9. Supply Current vs. Load Current, VOUT = 0.5 V
Figure 12. Supply Current vs. Load Current, VOUT = 1 V
10
10
VIN = 2V TO 18V
8 8
VIN = 2V TO 18V
LINE REGULATION (ppm/V)
6
LINE REGULATION (ppm/V)
6
4
4
2
06322-010
2
06322-013
0 -40
-25
-10
5
20
35
50
65
80
95
110
125
0 -40
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE (C)
TEMPERATURE (C)
Figure 10. Line Regulation vs. Temperature, VOUT = 0.5 V
Figure 13. Line Regulation vs. Temperature, VOUT = 1 V
Rev. 0 | Page 7 of 16
ADR130
0.05
0.08
LOAD REGULATION-SOURCE (mV/mA)
0.04
LOAD REGULATION-SOURCE (mV/mA)
0.07 0.06 0.05 0.04 0.03 0.02
06322-017
0.03
0.02
0.01
06322-014
0.01 0 -40
0 -40
-25
-10
5
20
35
50
65
80
95
110
125
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE (C)
TEMPERATURE (C)
Figure 14. Load Regulation (Source) vs. Temperature, VOUT = 0.5 V
Figure 17. Load Regulation (Source) vs. Temperature, VOUT = 1 V
1.0 0.9
2.0 1.8
LOAD REGULATION-SINK (mV/mA)
0.8 0.7 0.6 0.5 0.4 0.3 0.2
06322-015
LOAD REGULATION-SINK (mV/mA)
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -40 -25 -10 5 20 35 50 65 80 95 110
06322-018
0.1 0 -40 -25 -10 5 20 35 50 65 80 95 110
125
125
TEMPERATURE (C)
TEMPERATURE (C)
Figure 15. Load Regulation (Sink) vs. Temperature, VOUT = 0.5 V
Figure 18. Load Regulation (Sink) vs. Temperature, VOUT = 1 V
CIN = COUT = 0.1F
CIN = COUT = 0.1F CH1 PEAK-TO-PEAK 5.72V CH1 PEAK-TO-PEAK 3.16V
2V/DIV
06322-016
2V/DIV
TIME (1s/DIV)
TIME (1s/DIV)
Figure 16. 0.1 Hz to 10 Hz Noise, VOUT = 0.5 V
Figure 19. 0.1 Hz to 10 Hz Noise, VOUT = 1 V
Rev. 0 | Page 8 of 16
06322-019
ADR130
CIN = COUT = 0.1F CH1 PEAK-TO-PEAK 172V
CIN = COUT = 0.1F PEAK-TO-PEAK 291V
50V/DIV
50V/DIV
06322-020
TIME (1s/DIV)
TIME (1s/DIV)
Figure 20. 10 Hz to 10 kHz Noise, VOUT = 0.5 V
Figure 23. 10 Hz to 10 kHz Noise, VOUT = 1 V
CIN = COUT = 0.1F VIN = 1V/DIV
CIN = COUT = 0.1F VIN = 1V/DIV
VOUT 200mV/DIV
06322-021
TIME (40s/DIV)
TIME (40s/DIV)
Figure 21. Turn-On Response, VOUT = 0.5 V
Figure 24. Turn-On Response, VOUT = 1 V
VIN = 1V/DIV CIN = COUT = 0.1F
CIN = COUT = 0.1F VIN = 1V/DIV
06322-022
TIME (10ms/DIV)
TIME (400s/DIV)
Figure 22. Turn-Off Response, VOUT = 0.5 V
Figure 25. Turn-Off Response, VOUT = 1 V
Rev. 0 | Page 9 of 16
06322-025
VOUT = 200mV/DIV
VOUT = 500mV/DIV
06322-024
VOUT = 500mV/DIV
06322-023
ADR130
CIN = COUT = 0.1F
VIN = 1V/DIV CIN = COUT = 0.1F
VIN = 1V/DIV
06322-026
TIME (100s/DIV)
TIME (100s/DIV)
Figure 26. Line Transient Response, VOUT = 0.5 V
Figure 29. Line Transient Response, VOUT = 1 V
VLOAD = 0.5V/DIV CIN = COUT = 0.1F RLOAD = 125 ILOAD = 0mA
VLOAD = 1V/DIV CIN = COUT = 0.1F RLOAD = 250 ILOAD = 0mA
ILOAD = 4mA
ILOAD = 4mA
06322-027
TIME (40s/DIV)
TIME (40s/DIV)
Figure 27. Load Transient Response (Source), VOUT = 0.5 V
Figure 30. Load Transient Response (Source), VOUT = 1 V
VLOAD = 200mV/DIV CIN = COUT = 0.1F RLOAD = 125
ILOAD = 2mA
VLOAD = 500mV/DIV CIN = COUT = 0.1F RLOAD = 250
ILOAD = 2mA
ILOAD = 0mA
ILOAD = 0mA
06322-028
TIME (40s/DIV)
TIME (40s/DIV)
Figure 28. Load Transient Response (Sink), VOUT = 0.5 V
Figure 31. Load Transient Response (Sink), VOUT = 1 V
Rev. 0 | Page 10 of 16
06322-031
VOUT = 100mV/DIV
VOUT = 100mV/DIV
06322-030
VOUT = 20mV/DIV
VOUT = 20mV/DIV
06322-029
VOUT = 20mV/DIV
VOUT = 20mV/DIV
ADR130 TERMINOLOGY
Temperature Coefficient Temperature coefficient is the change of output voltage with respect to the operating temperature change normalized by the output voltage at 25C. This parameter is expressed in ppm/C and is determined by Long-Term Stability Long-term stability is the typical shift of output voltage at 25C on a sample of parts subjected to a test of 1000 hours at 25C.
VO = VO (t 0 ) - VO (t1 )
VO [ppm ] = VO (t 0 ) - VO (t1 ) VO (t 0 ) x 106
TCVO [ppm/C ] = where:
VO (25C ) x (T2 - T1 )
VO (T2 ) - VO (T1 )
x 10
6
where:
VO(25C) = VO at 25C. VO(T1) = VO at Temperature 1. VO(T2) = VO at Temperature 2. Line Regulation Line regulation is the change in the output due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either %/V, ppm/V, or V/VIN. Load Regulation Load regulation is the change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either mV/mA, ppm/mA, or dc output resistance ().
VO(t0) = VO at 25C at Time 0. VO(t1) = VO at 25C after 1000 hours operating at 25C.
Thermal Hysteresis Thermal hysteresis is the change of output voltage after the device is cycled through temperatures from +25C to -40C to +125C, then back to +25C. This is a typical value from a sample of parts put through such a cycle.
where:
VO(25C) = VO at 25C. VOTC = VO at 25C after temperature cycle from +25C to -40C to +125C, then back to +25C.
Rev. 0 | Page 11 of 16
ADR130 THEORY OF OPERATION
The ADR130 sub-band gap reference is the high performance solution for low supply voltage and low power applications. The uniqueness of this product lies in its architecture.
INPUT CAPACITOR
Input capacitors are not required on the ADR130. There is no limit for the value of the capacitor used on the input, but a 1 F to 10 F capacitor on the input improves transient response in applications where there is a sudden supply change. An additional 0.1 F capacitor in parallel also helps reduce noise from the supply.
POWER DISSIPATION CONSIDERATIONS
The ADR130 is capable of delivering load currents to 4 mA with an input range from 3.0 V to 18 V. When this device is used in applications with large input voltages, care must be taken to avoid exceeding the specified maximum power dissipation or junction temperature, because this results in premature device failure. Use the following formula to calculate the maximum junction temperature or dissipation:
PD = TJ - TA JA
OUTPUT CAPACITOR
The ADR130 requires a small 0.1 F output capacitor for stability. Additional 0.1 F to 10 F capacitance in parallel can improve load transient response. This acts as a source of stored energy for a sudden increase in load current. The only parameter affected by the additional capacitance is turn-on time.
where:
TJ is the junction temperature. TA is the ambient temperature. PD is the device power dissipation. JA is the device package thermal resistance.
Rev. 0 | Page 12 of 16
ADR130 APPLICATION NOTES
BASIC VOLTAGE REFERENCE CONNECTION
The circuits in Figure 32 and Figure 33 illustrate the basic configuration for the ADR130 voltage reference.
1 NC
1 2 3
NC
U2 ADR130
NC 6 SET 5
GND VIN
VOUT 4
VOUT2 0.1F
ADR130
NC 6 OUTPUT
0.1F
2 GND
SET 5 VOUT 4
INPUT
3 VIN
0.1F
0.1F
06322-032
INPUT
1 2 3
NC
U1 ADR130
NC 6 SET 5
GND VIN
VOUT 4
VOUT1
Figure 32. Basic Configuration, VOUT = 0.5 V
0.1F
0.1F
06322-035
ADR130
1 2
NC GND VIN
NC 6 SET 5 VOUT 4 OUTPUT
Figure 35. Stacking References with ADR130, VOUT1 = 0.5 V. VOUT2 = 1.5 V
INPUT
3
0.1F
0.1F
06322-033
Figure 33. Basic Configuration, VOUT = 1 V
STACKING REFERENCE ICs FOR ARBITRARY OUTPUTS
Some applications may require two reference voltage sources that are a combined sum of the standard outputs. Figure 34 and Figure 35 show how these stacked output references can be implemented.
1 2 3
Two reference ICs are used and fed from an unregulated input, VIN. The outputs of the individual ICs that are connected in series provide two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, and VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Table 5). For example, if U1 is set to have an output of 1 V or 0.5 V, the user can stack on top of U2 to get an output of 2 V or 1.5 V.
Table 5. Required Outputs
U1/U2 ADR130/ADR130 ADR130/ADR130 Comments See Figure 34 See Figure 35 VOUT1 1V 0.5 V VOUT2 2V 1.5 V
NC
U2 ADR130
NC 6 SET 5
GND VIN
VOUT 4
VOUT2 0.1F
0.1F
INPUT
1 2 3
NC
U1 ADR130
NC 6 SET 5
GND VIN
VOUT 4
VOUT1
0.1F
0.1F
06322-034
Figure 34. Stacking References with ADR130, VOUT1 = 1.0 V, VOUT2 = 2.0 V
Rev. 0 | Page 13 of 16
ADR130
NEGATIVE PRECISION REFERENCE WITHOUT PRECISION RESISTORS
A negative reference is easily generated by adding an op amp, A1, and is configured as shown in Figure 36. VOUT is at virtual ground and, therefore, the negative reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output.
1 2
PRECISION CURRENT SOURCE
In low power applications, the need can arise for a precision current source that can operate on low supply voltages. The ADR130 can be configured as a precision current source (see Figure 37). The circuit configuration shown is a floating current source with a grounded load. The reference output voltage is bootstrapped across RSET, which sets the output current into the load. With this configuration, circuit precision is maintained for load currents ranging from the reference supply current, typically 85 A, to approximately 4 mA.
1 2
NC
U2 ADR130
NC 6 SET 5
GND VIN 0.1F
NC
ADR130
NC 6
+VDD
3
VOUT 4
GND VIN
SET 5 VOUT 4 RSET
VIN
3
V+ -VREF
1k
A1 OP291
06322-036
P1 RL
V- -VDD
Figure 36. Negative Reference, -VREF = -0.5 V
Figure 37. ADR130 as a Precision Current Source
Rev. 0 | Page 14 of 16
06322-037
ADR130 OUTLINE DIMENSIONS
2.90 BSC
6 5 4
1.60 BSC
1 2 3
2.80 BSC
PIN 1 INDICATOR 0.95 BSC *0.90 0.87 0.84 1.90 BSC
*1.00 MAX
0.20 0.08 8 4 0 0.60 0.45 0.30
0.10 MAX
0.50 0.30
SEATING PLANE
*COMPLIANT TO JEDEC STANDARDS MO-193-AA WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
Figure 38. 6-Lead Thin Small Outline Transistor Package [TSOT] (UJ-6) Dimensions shown in millimeters
ORDERING GUIDE
Model ADR130AUJZ-REEL7 1 ADR130AUJZ-R21 ADR130BUJZ-REEL71 ADR130BUJZ-R21
1
Temperature Coefficient (ppm/C) 50 50 25 25
Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C
Package Description 6-Lead TSOT 6-Lead TSOT 6-Lead TSOT 6-Lead TSOT
Package Option UJ-6 UJ-6 UJ-6 UJ-6
Branding R0W R0W R0X R0X
Ordering Quantity 3,000 250 3,000 250
Z = Pb-free part.
Rev. 0 | Page 15 of 16
ADR130 NOTES
(c)2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06322-0-10/06(0)
Rev. 0 | Page 16 of 16


▲Up To Search▲   

 
Price & Availability of ADR130

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X